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Abstract
Fractal dimension and lacunarity were calculated for a set of light curves belonging to dScuti stars. Box
counting was the selected method, alongside with a parallel lacunarity calculation. For the fractal dimension,
we get results coherent with correlated data points, with low complexity and persistent behavior. For the
lacunarity, small box size shows a higher similarity when compared to the larger. In conclusion, for the smaller
scales here analyzed, time series behaves persistent, correlated, and are similar between blocks.

1 Brief method review

Fractal dimension (hereafter D) can be assessed through different methods, from which one of the most widely
used is the box-counting algorithm. Basically, it consists in divide the object in boxes of same size and then
count how many of them has mass different from zero (namely, boxes harboring at least one data point). The
calculation is repeated for different box sizes (hereafter r), then a plot is created on the log-log space for the
inverse of the box size (sometimes called magnification) against the number of non-zero mass boxes (hereafter
N (r)). Therefore, fractal dimension is defined as the slope of the first order polynomial fit, for the generated set
of points,

N(r)=ArP (1)

log;o N (r) = log;g A + D logy, (i) (2)
where N (r) is the number of non-empty boxes, for a given r, A(r) is the lacunarity, and D is the fractal dimension.
The fact of showing a power-law characteristic is an indicative of self-similarity.

Given its simplicity, box-counting is a good method for assess the fractal dimension of the objects, as a first
diagnosis of the non-linear behavior.

Besides the value of D, calculation of lacunarity also give us important information. Lacunarity can be
conceived as the deviation of a fractal from translational invariance. As translational invariance is strongly
dependent on the scale (or in our case, box size), thus lacunarity is here considered as a scale-dependent measure
of the texture of an object [Plotnick et al., 1996]. Note that this is not an exclusive property of fractal objects.

Additionally to the calculation of the overall A in Eq. 2, we employed the Allain and Cloitre [1991] method
(the gliding-box algorithm) for calculating the lacunarity at each box size, following the proposed recipe on which
the value is obtained through the first and second distribution moments of the probability function (hereafter
Q(+)) for a sample of box masses (hereafter s, number of occupied sites within the boxes), given a box size,

Z2(r
SR B (3)
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where ZS)(T) and Zg)(r) can be defined in terms of variance (s2(r)) and mean ((s(r))) [Plotnick et al., 1996],

S

Z) ) = (s(r)) . Z5)(r) = s2(r) + (s(r))? (5)

As stated by Allain and Cloitre [1991], in the case of a translationally invariant object, Q(s,r) is a Dirac function,
given as result lacunarity with unity value, Vr.

2 Code

For all the light curves, no any assumption was made (even the sampling rate was calculated from scratch). For
the fractal dimension calculation we iterated over increasing box sizes, where the minimal box was obtained by
calculating sampling rate over a representative subset of points, drawn from a Normal random selection. Thus
the minimal box size was set as the sampling rate, and then the size was increased by multiplying this value by
the next integer'. For each light curve, 1000 box sizes were input to the calculation, covering from ~32 s to
~ 32000 s (~8.89 h).
To deal with boundaries, data were replicated through symmetric reflection: xs, x1|xo, 1, ..., Tn_1,Tn|Tn_1, Tn_2
An mimic of the counting code (developed in Python 2.7) is shown below to illustrate part of the algorithm,

low_limit = np.fromfunction(lambda i: (i*box_size),(N_r,),dtype=np.float)
low_limit += pad_datal[’time’][0]
counter = OL
for it in np.nditer(low_limit):
cond = np.where(np.logical_and(pad_data[’time’] >= it,pad_data[’time’] < (it+box_size)))
if (pad_datalcond].shape[0] > 0):
counter += 1

It is important to note that in this implementation, boxes are vertical sections covering all the range of fluxes,
for a given range in time. No measurements were made implementing a square-box grid.

For the linear fits (Eq. 2), two competing methods were employed: non-linear least-squares (scipy) and
ordinary least-squares (statsmodels). Even when both agree within the error bars, the ordinary least-squares
approach was selected because of the more realistic values of the errors, for in fractal dimension and lacunarity.
Results of the fits, jointly with the logarithmic likelihood of the adjustment are shown in Table 1.

For the calculation of lacunarity at each box size, we employed Eqs. 3-5, at each of the 1000 different box
sizes.

3 Results

First of all, all plots (Figs. 1-6) are labeled by its filename, and posses 3 parts. Upper left panel shows the log-log
plot of the inverse of box size versus the number of non-empty boxes, with data points in blue and the linear
fit in red. Lower left panel shows the magnification versus the overall lacunarity (from Eq. 2) as orange dashed
horizontal line, while on green are shown the values for inverse box size versus the scale dependent lacunarity
(from Eq. 3). Right panel shows a window of the light curve, equivalent to the ceiling value of the inverse of the
sampling rate (window of one day). Axes are time?in calendar units versus the flux normalized by its mean.

Table 1 exhibits the results for the ordinary least-squares fits for the log-log plots. On the first column the
ID were taken from the filenames, second column shows the value of the fractal dimension, third column shows
the logarithmic value of the overall lacunarity, and fourth column shows the log-likelihood value of the fit.

Even when this is a simple estimation, which can be refined based on which scale it is desired to target, results
are indicatives of some clear outputs:

e behavior of the analyzed time series is highly monofractal,

e the system is persistent: the level of correlation and predictability in small scales (given our box sizes) is
strong,

L As we were interested in the small scale effects, this was a reasonable assumption.
2Julian Date was assumed for time axis, with a the CoRoT time delay of 2451545 JD.



e at the analyzed scales, the systems shows a low complexity,
e at the analyzed scales, the overall behavior is smooth.

As the first item points, and Figs. 1-6 exhibits, all the time series can be characterized by a single power-law
relation over the entire range of r. This is an indicative of the monofractal nature over the range of box sizes,
which also shows the low level of complexity of these objects.

As our analysis was centered on small scales (wider box size is slightly smaller than 9 h), and the fractal
dimension is close to 1, we can infer a high level of correlation between points. The high correlation also give us
the chance of predict the behavior of adjacent data points, based on a small vicinity (referring to our available
r). It is remarkable the small errors for all the fitted slope values, as seen on Table 1.

Smooth behavior can be inferred with a more careful interpretation: the overall smoothness can be hiding
some local sharpness. Must be noticed that this calculation of the fractal dimension shows a monofractal behavior
with D ~ 1, but it is recommendable to perform a more dedicated analysis over the scales of special interest.

Regarding the overall lacunarity calculations, a higher dispersion is observed in values. Whereas they are not
meaningful by its own, but when compared among others: that is the motivation to perform the scale dependent
measure (A(r)).

For A(r), higher values means a lower translational invariance whereas lower values shows a higher self
similarity when blocks of data are compared. It is expected that at higher box sizes, A(r) must assume higher
values, reflecting that the object at this scale shows a lower similarity between blocks when compared with smaller
scale. Its is noticeable from the plots with filenames ending in “a” and “1” a rapid decrease in the value, indicating
translational invariance is a feature for these light curves at small scales. Namely, when A(r) ~ 1.

In the other hand, light curves whose filenames ends in “g” shows a similar double decay: first from the higher
rup to r ~ 0.0687 d (r~! ~ 14.55) and then a lower decay up to the higher magnification (maybe it would be
worthy to analyze this change in slope). The last decay did not reach the lower values exhibited by the first set
of data (“a” and “I”). Special attention deserves HD41641g (Fig. 4), showing a linear decay without the inflection
point at r ~ 0.0687 d, but further interpretation is beyond the scope of the available results.

Results for D and A(r) for each r are given as numpy record arrays (structured arrays), in attachment.
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ID D log,, A logo, £
GSC00144-03031a  0.99820 £+0.00004 1.90142 £0.00004 6096
GSC00144-03031g  0.98964 £0.00015 1.90645 £0.00015 4683
GSC00144-030311  0.99820 £0.00004 1.90143 £0.00004 6096

HD170699a 0.99841 £0.00003  1.95348 £0.00003 6210
HD170699g 0.99204 £0.00019  1.95790 £0.00019 4482
HD1706991 0.99841 £0.00003  1.95348 £0.00003 6209
HD172189a 0.99904 £0.00002  2.17486 £0.00002 6720
HD172189¢g 0.99312 £0.00018  2.17879 £0.00018 4494
HD1721891 0.99904 £0.00002  2.17487 £0.00002 6726
HD174532a 0.99463 £0.00012  1.42813 £0.00012 5002
HD174532¢g 0.98255 £0.00015  1.43551 £0.00015 4647
HD1745321 0.99462 £0.00012  1.42814 £0.00012 5005
HD174589a 0.99462 £0.00012  1.42698 £0.00012 4997
HD174589g 0.98263 £0.00016  1.43421 £0.00016 4632
HD1745891 0.99462 £0.00012  1.42698 £0.00012 4997
HD174936a 0.99484 £0.00011  1.44323 £0.00011 5040
HD174936g 0.98867 £0.00019  1.44807 £0.00019 4474
HD1749361 0.99483 £0.00011  1.44334 £0.00011 5035
HD174966a 0.99482 £0.00011  1.44339 £0.00011 5038
HD174966¢g 0.98922 £0.00018  1.44774 £0.00018 4539
HD1749661 0.99482 £0.00011  1.44339 £0.00011 5038
HD181555a 0.99909 £0.00002  2.19647 £0.00002 6796
HD181555g 0.99337 £0.00021  2.20059 £0.00021 4388
HD1815551 0.99910 £0.00002  2.19647 £0.00002 6788
HD41641a 0.99849 £0.00003  1.97769 £0.00003 6269
HD41641g 0.98868 £0.00016  1.95344 £+0.00016 4600
HD416411 0.99849 £0.00003  1.97769 £0.00003 6269
HD48784a 0.99444 4+0.00012  1.41274 4+0.00012 4970
HD48784¢g 0.98787 £0.00019  1.41769 £0.00019 4490
HD487841 0.99444 £0.00012  1.41274 £0.00012 4970
HD49434a 0.99896 £0.00002  2.13816 £0.00002 6648
HD49434g 0.98935 £0.00020  2.14353 £0.00020 4389
HD494341 0.99896 £0.00002  2.13816 £0.00002 6646
HD50844a 0.99753 £0.00005  1.76548 £0.00005 5786
HD50844g 0.99141 £0.00020 1.77001 £+0.00020 4411
HD508441 0.99754 £0.00005  1.76548 £0.00005 5779
HD50870a 0.99875 £0.00003  2.06062 £0.00003 6464
HD50870g 0.99331 £0.00018  2.06441 £0.00018 4533
HD508701 0.99875 £0.00003  2.06062 £0.00003 6464
HD51359a 0.99879 £0.00003  2.07178 £0.00003 6502
HD51359¢g 0.99288 £0.00019  2.07598 £0.00019 4452
HD513591 0.99879 £0.00003  2.07178 £0.00003 6502
HD51722a 0.99878 £0.00003  2.07165 £0.00003 6471
HD51722g 0.99285 £0.00019  2.07585 £+0.00019 4488
HD517221 0.99878 £0.00003  2.07165 £0.00003 6471

Table 1: Table with the results of the fractal dimension and logarithmic lacunarity least-squares fit. Last column
exposes the logarithmic likelihood of the fit. A word of caution about the log-likelihood values here exhibited:
their values are extremely high because of the goodness of fit, and must be used for comparison only.
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Figure 1: Set 1.
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Figure 2: Set 2.



Figure 3: Set 3.
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Figure 4: Set 4.
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Figure 6: Set 6.
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